Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 1037115, 2022.
Article in English | MEDLINE | ID: covidwho-2278618

ABSTRACT

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Sepsis , Humans , Biomarkers , Blood Proteins/metabolism , Case-Control Studies , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Research Report , SARS-CoV-2 , Sepsis/metabolism , Uteroglobin/metabolism
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092943

ABSTRACT

Background Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16’s high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022;sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar−blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.

5.
Nat Metab ; 2(10): 1021-1024, 2020 10.
Article in English | MEDLINE | ID: covidwho-744385

ABSTRACT

Here we report a case where the manifestations of insulin-dependent diabetes occurred following SARS-CoV-2 infection in a young individual in the absence of autoantibodies typical for type 1 diabetes mellitus. Specifically, a 19-year-old white male presented at our emergency department with diabetic ketoacidosis, C-peptide level of 0.62 µg l-1, blood glucose concentration of 30.6 mmol l-1 (552 mg dl-1) and haemoglobin A1c of 16.8%. The patient´s case history revealed probable COVID-19 infection 5-7 weeks before admission, based on a positive test for antibodies against SARS-CoV-2 proteins as determined by enzyme-linked immunosorbent assay. Interestingly, the patient carried a human leukocyte antigen genotype (HLA DR1-DR3-DQ2) considered to provide only a slightly elevated risk of developing autoimmune type 1 diabetes mellitus. However, as noted, no serum autoantibodies were observed against islet cells, glutamic acid decarboxylase, tyrosine phosphatase, insulin and zinc-transporter 8. Although our report cannot fully establish causality between COVID-19 and the development of diabetes in this patient, considering that SARS-CoV-2 entry receptors, including angiotensin-converting enzyme 2, are expressed on pancreatic ß-cells and, given the circumstances of this case, we suggest that SARS-CoV-2 infection, or COVID-19, might negatively affect pancreatic function, perhaps through direct cytolytic effects of the virus on ß-cells.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Diabetes Mellitus, Type 1/complications , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , Betacoronavirus/immunology , Biomarkers , COVID-19 , Coronavirus Infections/immunology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , HLA-D Antigens/genetics , HLA-D Antigens/immunology , Humans , Immunoglobulin M/immunology , Insulin/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/immunology , Male , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL